Students in the USA are Talking to Students and Teachers in China About Cooking Space Food

STUDENTS COOKING SPACE FOOD

Students at the Barboza Space Center are exploring the idea of cooking space food.  This article will help to set the stage at your school or afterschool STEM program.  We are stronger if we work together.  Who wants to help?  We want to publish your ideas.   Suprschool@aol.com
SPACE TRAVEL

How bright is the future of space food
by Staff Writers
Honolulu HI (SPX) Feb 27, 2017


illustration only

Research at the University of Hawai?i at Manoa could play a major role in NASA’s goal to travel to Mars in the 2030s, including what the astronauts could eat during that historic mission.

A trip to Mars and back is estimated to take about two and half years, and ideally, their diet would be healthy while requiring minimal effort and energy. UH Manoa mechanical engineering student Aleca Borsuk may have the solution.

“I picked a really hearty, heat tolerant, drought tolerant species of edible vegetable, and that is amaranth. It’s an ancient grain,” said Borsuk, who determined that she could significantly increase the edible parts, which is basically the entire plant, by changing the lighting. “If you move the lights and have some of them overhead and some of them within the plant leaves, it can actually stimulate them to grow faster and larger.”

This is without adding more lights and by using energy efficient LEDs. Thanks to Borsuk’s work with lighting, plants could play an important role in the future of space travel.

“This plant would do the same thing that it does here on Earth, which is regenerate oxygen in the atmosphere,” said Borsuk. “It also can provide nutrition for the astronauts and if you can imagine being away from Earth for many years, you know tending something that’s green would have a psychological boost as well.”

A 2013 UH Presidential Scholar, Borsuk presented her research at the Hawai?i Space Grant Consortium Spring 2016 Fellowship and Traineeship Symposium and at the 2016 American Society for Horticultural Science Conference in Florida. She is mentored by UH Manoa Tropical Plant and Soil Sciences Associate Professor Kent Kobayashi, who is also an American Society for Horticultural Science Fellow.

Advertisements

International Art Contest for Students

Mars Society to Hold Int’l Student Mars Art Contest

The Mars Society announced today that it is sponsoring a Student Mars Art (SMArt) Contest, inviting youth from around the world to depict the human future on the planet Mars. Young artists from grades 4 through 12 are invited to submit up to three works of art each, illustrating any part of the human future on the Red Planet, including the first landing, human field exploration, operations at an early Mars base, the building of the first Martian cities, terraforming the Red Planet and other related human settlement concepts.

The SMArt Contest will be divided into three categories: Upper Elementary (grades 4-6), Junior High (grades 7-9), and High School (Grades 10-12). Cash prizes of $1,000, $500 and $250, as well as trophies, will be given out to the first, second and third place winners of each section. There will also be certificates of honorable mention for those artists who don’t finish in the top three, but whose work is nevertheless judged to be particularly meritorious.

The winning works of art will be posted on the Mars Society web site and may also be published as part of a special book about Mars art. In addition, winners will be invited to come to the 20th Annual International Mars Society Convention at the University of California, Irvine September 7-10, 2017 to display and talk about their art.

Mars art will consist of still images, which may be composed by traditional methods, such as pencil, charcoal, watercolors or paint, or by computerized means. Works of art must be submitted via a special online form (http://nextgen.marssociety.org/mars-art) in either PDF or JPEG format with a 500 MB limit. The deadline for submissions is May 31, 2017, 5:00 pm MST. By submitting art to the contest, participating students grant the Mars Society non-exclusive rights to publish the images on its web site or in Kindle paper book form.

Speaking about the SMArt Contest, Mars Society President Dr. Robert Zubrin said, “The imagination of youth looks to the future. By holding the SMArt Contest, we are inviting young people from all over the world to use art to make visible the things they can see with their minds that the rest of us have yet to see with our own eyes. Show us the future, kids. From imagination comes reality. If we can see it, we can make it.”

Questions about the Mars Society’s SMArt Contest can be submitted to: Marsart@marssociety.org.

Teaching Gardening

Dr. Jose Barbosa, loading up produce.

This year, students in the College of Arts and Sciences (CAS) have been able to get their hands dirty while putting down roots in the community – literally!

The UTC Teaching & Learning Garden began this past spring, taking students out to learn about raising food in an urban environment. In total this year, the Garden was able to raise 2100 pounds of produce that was donated to the Chattanooga Community Kitchen.

“And that’s pesticide free during an extremely difficult summer without rain. The students are learning more than they could have imagined. More than any of us could’ve imagined,” said Dr. Joe Wilferth, UC Foundation Professor and Associate Dean of the College of Arts and Sciences.

The last harvest of the year, approximately 400 pounds of produce, was delivered to the Community Kitchen in time for Thanksgiving.

“They had quite a Thanksgiving feast!” Wilferth said.

UTC student Chloe Dente

The Teaching & Learning Garden is more than just a community garden, however. The Garden is a hands on learning space that addresses topics that UTC students care about, like sustainability, gardening, local food economies, health and food production

Dr. Jose Barbosa, Associate Professor of Biology, Geology, and Environmental Science in the College of Arts and Sciences, is the primary faculty sponsor for the project, providing oversight and planning of the space. Most of the students who worked in the garden were earning class credit in Barbosa’s Urban Gardening classes. However, students not in Barbosa’s class also volunteered.

“The garden is open for academic use to faculty and students all across CAS. In the future, faculty are invited to approach Dr. Barbosa or me if they wish to integrate the garden into their coursework,” said Wilferth.

Wilferth looks forward to the opportunities for interdisciplinary and multidisciplinary work both within CAS and across the campus that the Teaching & Learning Garden provides. Approximately 125 students in Art, Biology, English, Environmental Science, Political Science, and Sociology all participated in the project since spring.

“The garden may be used by specific courses across the CAS as it exemplifies experiential and hands-on learning. It could be expanded in the future to include courses and experiential learning opportunities in other colleges on our campus—e.g., courses in other colleges that focus on food production, nutrition, health and wellness, environmental literature, as well as the sociopolitical and socioeconomic factors involved in food production and food quality,” Wilferth said.

A bountiful harvest of radishes.

The Garden is located behind the outfield wall of Engel Stadium, just around the corner from the Value Lot. This past March, the folks in Facilities donated their time and resources to clearing the land, which wasn’t previously in use, for the Garden.

“This is an ideal space because of its proximity to campus. The shuttle service can take students to and from the garden. Class meetings wherein students visit/work in the garden will not require additional time, nor will the students’ academic schedules be interrupted,” Wilferth said.

This year, all of the produce to come out of the Garden went to the Chattanooga Community Kitchen, but in future years some of the food may also end up in students’ stomachs.

“In the future, we are considering ways to have something like a farmers market on campus where the proceeds might go to support student travel and undergraduate and graduate student research,” explained Wilferth.

The Chattanooga Community Kitchen would still receive at least a third of the harvest.

The Environmental Task Force, which oversees the “Green Fee” funds, supported half of the garden’s costs this year.

“This first year, of course, was the most expensive year simply because we had to get the garden going. We had to purchase tools, a storage facility, and more,” said Wilferth. “Other offices around campuses committed funds, too. Significant support came from both the Office of Undergraduate Research and Creative Activity and from the Vice Chancellor for Research and Dean of the Graduate School. In the end, this is a relatively cheap project that has potential for a big impact. We’re doing something exciting here. We’re literally growing!”

President Obama Talks About Going to Mars

Mars 2030 what’s good?
Who wants to go to Mars?   The students at the Barboza Space Center were thrilled to hear the news coming from President Obama this week.  “We are all training to be junior astronauts, engineers and scientists and President Obama was saying just what we wanted to hear.”   We invite you to read  what we found in the international news.
Kids Talk Radio Science
79089f500faba58f2b3ca012fde9e352.jpg

President Obama is on his way out, but he has one final request: he wants to send Americans to Mars by 2030. In a new op-ed, Obama penned for CNN the President outlined his plan to make that request a reality. In the piece, President Obama detailed his efforts to partner with private companies to send citizens to outer space.

“The space race we won not only contributed immeasurably important technological and medical advances, but it also inspired a new generation of scientists and engineers with the right stuff to keep America on the cutting edge,” Obama wrote about the importance of space exploration, before outlining the next steps. “We have set a clear goal vital to the next chapter of America’s story in space: sending humans to Mars by the 2030s and returning them safely to Earth, with the ultimate ambition to one day remain there for an extended time,” he added.

But to accomplish this ambitious goal of his, he says it will “require continued cooperation between government and private innovators.” And while that may be just a dream, he has hopes that it will happen. “Someday, I hope to hoist my own grandchildren onto my shoulders. We’ll still look to the stars in wonder, as humans have since the beginning of time,” he wrote. “But instead of eagerly awaiting the return of our intrepid explorers, we’ll know that because of the choices we make now, they’ve gone to space not just to visit, but to stay — and in doing so, to make our lives better here on Earth.”

Obama isn’t the only one working on a master plan though. In September 2016, a billionaire businessman by the name of Elon Musk, announced that he too had plans to send people to Mars, using a rocket developed by his SpaceX company, according to The New York Times.

In 2001, space shuttles discovered water and evidence of rocks and minerals on the planet. We’ve got some more time left on the clock, but get your space gear ready to be walking (or floating) on Mars in 2030.

Read Obama’s full op-ed here.

Talking to China About Mars

NASA is now hiring astronauts for trips to space and Mars that would blast them with radiation, but Crave’s Eric Mack learns that some corners of the world already get a similar treatment.

mars_2445397b.jpg

    Why the best Mars colonists could come from places like Iran and Brazil

by Eric Mack

@ericcmack

Mars colonists will need to stand up to heavy doses of radiation.

NASA

On Monday, NASA officially opened an application window for the next generation of American astronauts it hopes to send to the International Space Station, lunar orbit and eventually to Mars. But to find the best candidates for dealing with the harsh levels of radiation in space and on the Red Planet, the agency may want to consider looking beyond the borders of the United States for applicants.

One of the biggest challenges in sending astronauts into deep space or setting up a base on Mars is dealing with the radiation from the cosmic rays that our sun and other stars send flying around the universe. Earth’s atmosphere and magnetic field deflect the worst of this radiation, but Mars has no substantial magnetic field, which has in turn allowed much of its atmosphere to be lost to space over the millennia.

Spacecraft can be equipped with radioactive shielding to some extent, and a base on Mars could also be constructed essentially underground, using several meters of Martian soil to provide radiation protection on par with Earth’s atmosphere (this is what Mars One hopes to do). But when it comes to roaming around the surface of Mars in a spacesuit or in a rover, there’s no real practical way for those astronauts to avoid some big doses of radiation in the process.

When I attended the New Worlds conference earlier in 2015, there was a discussion of the challenge that cosmic radiation presents for space exploration, and there were some pretty far-fetched possible solutions, like genetically engineering astronauts in the future to handle more radiation.

But I was more intrigued by one partial solution that was mentioned in passing and only half-seriously — to consider astronaut candidates who are already used to dealing with more exposure to radiation than most of the rest of us.

For years now, scientists have been studying residents of Ramsar, a town in northern Iran that is believed to have the highest levels of naturally occurring background radiation for an inhabited area. Levels up to 80 times the world average (PDF) have been measured in town, yet studies of the few thousand people living in the area show rates of lung cancer are actually below average. In fact, research shows that a gene responsible for the production of white blood cells and so-called “natural killer cells” that attack tumors was more strongly expressed among the population.

10 spots in our solar system worth visiting…

In other words, there may be no need to engage in controversial “editing” of human genetics to create radiation-resistant astronauts because there might already be good prospects in a few corners of the world.

Besides Ramsar, the beaches near Guarapari, Brazil, also exhibit very high levels of natural radiation. People in Yangjiang, China, live with radiation levels three times the world average but have below-average cancer levels, and the story is the same in Karunagappally, India.

Unfortunately, none of the people from these areas would be eligible for the program NASA is now hiring for — the agency is only looking for American applicants. So who in the United States might be best suited for withstanding the most cosmic radiation?

Related stories

NASA puts out open call for new astronauts to pave way to Mars

NASA’s 20-year road map for getting us to Mars

Red Planet red flags? NASA council has doubts about Mars mission

Las Vegas odds on who will set foot on Mars first are totally nuts

As it turns out, I think it might be me. According to the US Nuclear Regulatory Commission and the National Radiation Map, Colorado — where my family has hailed from for generations — has some of the highest levels of background radiation in the country thanks to the high altitude and naturally occurring radioactive elements working their way up from the Earth.

Today, I’m actually about 50 miles south of the Colorado border, but I’m living at a higher elevation than Denver, and previous reporting has taught me that radon levels are actually quite high in the neighborhood as well.

Unfortunately, I am quite content just writing about space exploration and have no interest in ever leaving this planet myself. (As witness our CraveCast episode, Who wants to die on Mars?) Besides, some of my neighbors — who have lived with this region’s natural radiation for many more generations than my family has — would probably make better candidates.

So if NASA is unwilling to change its eligibility requirements to consider candidates from northern Iran, perhaps the organization ought to consider sending a recruiter to Taos Pueblo in northern New Mexico instead.

Tags:

Crave

Sci-Tech

NASA

Space

Wanted Raspberry Pi Projects for K-12 Education Worldwide

The Barboza Space Center: www.BarbozaSpaceCenter.com  is collecting Raspberry Pi projects to share with the Open Source Community.   Send us what you are working on an we will share the resources that we are working on.   If you need more information you can contact us at Suprschool@aol.com.

450px-Raspberry_Pi_3_Model_B.pngThe Raspberry Pi is a series of credit card-sized single-board computers developed in the United Kingdom by the Raspberry Pi Foundation to promote the teaching of basic computer science in schools and developing countries.[3][4][5] The original Raspberry Pi and Raspberry Pi 2 are manufactured in several board configurations through licensed manufacturing agreements with Newark element14 (Premier Farnell), RS Components and Egoman.[6] The hardware is the same across all manufacturers. The firmware is closed-source.[7]

Several generations of Raspberry Pis have been released. The first generation (Pi 1) was released in February 2012 in basic model A and a higher specification model B. A+ and B+ models were released a year later. Raspberry Pi 2 model B was released in February 2015 and Raspberry Pi 3 model B in February 2016. These boards are priced between US$20 and 35. A cut down “compute” model was released in April 2014, and a Pi Zero with smaller size and limited input/output (I/O), general-purpose input/output (GPIO), abilities released in November 2015 for US$5.

All models feature a Broadcom system on a chip (SoC), which includes an ARM compatible central processing unit (CPU) and an on chip graphics processing unit (GPU, a VideoCore IV). CPU speed ranges from 700 MHz to 1.2 GHz for the Pi 3 and on board memory range from 256 MB to 1 GB RAM. Secure Digital SD cards are used to store the operating system and program memory in either the SDHC or MicroSDHC sizes. Most boards have between one and four USB slots, HDMI and composite video output, and a 3.5 mm phone jack for audio. Lower level output is provided by a number of GPIO pins which support common protocols like I²C. The B-models have an 8P8C Ethernet port and the Pi 3 has on board Wi-Fi 802.11n and Bluetooth.

The Foundation provides Raspbian, a Debian-based linux distribution for download, as well as third party UbuntuWindows 10 IOT CoreRISC OS, and specialised media center distributions.[8] It promotes Python and Scratch as the main programming language, with support for many other languages.[9]

In February 2016, the Raspberry Pi Foundation announced that they had sold eight million devices, making it the best-selling UK personal computer, ahead of the Amstrad PCW.[10][11] Sales reached ten million in September 2016.[12]